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ABSTRACT

Existing rotationally invariant electroelastic equations are reduced to the case of large

electric fields and small strain. These latter equations are specialized to the case of thin plates

with completely electroded major surfaces, and it is shown that in this case the charge equation

of electrostatics is satisfied trivially to lowest order. It is further shown that for the thin

stress-free polarized ferroelectric ceramic plate subject to large electric fields, the resulting

equations readily account for experimental data in existence in the literature
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In the field of active vibration control thin fully electroded polarized ceramic plates are

used as actuators and sensors. The equations of linear piezoelectricity are employed in the

analytical description of the polarized ceramic even though large electric driving fields are

employed during actuation, for which the material behavior is strongly nonlinear. To account

for this inherent nonlinearity it has been suggested1 that the coefficients of the linear theory be

made field dependent, which is inconsistent from a theoretical standpoint. This is the current

state of affairs in spite of the fact that a rotationally invariant general nonlinear system of

electroelastic equations, which can readily account for the observed behavior, has been in

existence in the literature2 ' 3 for many years. In addition, all the work on piezoelectric

actuators uses only the linear piezoelectric constitutive equations and does not discuss the

extent to which the stress equations of motion or charge equation of electrostatics are or are

not satisfied.

In this paper the general rotationally invariant nonlinear electroelastic equations are

presented and specialized to the case of large fields and small strain. These latter

three-dimensional equations are then reduced to the case of anisotropic plane stress for the thin

electroelastic plate. The equations for the thin plate are further specialized to the case when

the major surfaces are completely covered with electrodes, and it is shown that the charge

equation of electrostatics is satisfied trivially to lowest order for this configuration. The

reduced form of the constitutive equations for the case of anisotropic plane stress when the

large surfaces of the thin plate are completely covered with electrodes is obtained from the

more general equations. These latter equations may be used in the extensional equations of



2

motion to obtain a determinate system of equations. The reduced constitutive equations are

specialized to the case of the polarized ceramic poled normal to the major surfaces and it is

shown that the resulting equations readily account for measurements by Crawley and

Anderson 1 of the stress-free PZT ceramic plate subject to large electric fields.

2. Eletrelsia EQuatins

The stress equations of motion and charge equation of electrostatics for material points

of an electroelastic solid may be written in the respective forms3

KLj, = 0 (2.1)

ýiL = O, (2.2)

where we have employed the conventions that capital and lower case indices, respectively,

refer to the reference Cartesian coordinates and present Cartesian coordinates of material

points. We also employ the conventions that a comma followed by a capital index denotes

partial differentiation with respect to the known reference coordinates, i.e., the independent

variables excluding time, a dot over a variable denotes partial differentiation with respect to

time and repeated tensor indices are to be summed. The symbols pO, uM' KLj, and

respectively, denote the reference mass density, the mechanical displacement, the total

Piola-Kirchhoff stress tensor (material plus Maxwell electrostatic) and the reference electric

displacement vector, which is related to the ordinary electric displacement vector Di. by

A = JXLjiDi. (2.3)

In (2.3) we have made use of the fact that the motion of a material point is described by the

relation

Yi = Yi(XL't)' (2.4)

which is one-to-one and differentiable as often as required, where yi and XL, respectively,

denote the present and reference position of material points,

J = det Yi,L' (2.5)



and a comma followed by a lower case index denotes partial differentiation with respect to the

unknown present coordinates of material points. The symbol 3jM in (2.1) is a translation

operator, which serves to translate a vector from the present to the reference position and

vice-versa and is required for notational consistency and clarity because of the use of capital

and lower case indices, respectively, to refer to the reference and present positions of material

points. Clearly, the mechanical displacement vector, uM, and present and reference positions

of material points, yi and XM, are related by

Yi = 3iM(XM + UM). (2.6)

The total Piola-Kirchhoff stress tensor KLj and reference electric displacement

vector 2L may be written in the respective forms3

KLj = HLj + MLj, (2.7)

"" -co ýL + YL' (2.8)

where e is the electric permittivity of free space, MKS units are being employed and

HLj = p0 yj,MX/VdEMM, 59 = - p0 x/dWL, (2.9)

MLj= Li ij =J ALiEi. (2.10)

The symmetric Maxwell electrostatic stress tensor TES., material strain tensor ELM, and
Ij

rotationally invariant electric variable WL are given by

T'Eiý = eo [EiEj - ½EkEk iJ] (2.11)
1

ELM = (YiLYi,M - 3LM), WL = yiLEi. (2.12)

The electric field Ei is related to the quasistatic electric scalar potential 0 by

Ei = -,i' (2.13)

and X = X(EKLWL) is a scalar state function, which for purposes of thiis work may be written

in the form

Po X= pABCDEABECD ABCWAEBC -2XABWAWB
2 ABCDWA BXCD -AABCWAWBC

d ABCD W XCWAWBWCEDE1

-ABCDE A BWCEDE - 4 4XABCDWAWBWcWD, (2.14)
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where the material constants cABCD' eABC' XAB' bABCD' XABC' dABCDE' and XABCD
2 2 3 3 4

are called the second order elastic, piezoelectric, second-order electric permeability,

electrostrictive, third-order electric permeability, third odd electroelastic, and fourth-order

electric permeability, respectively. At this point we note, from (2.12)2 and (2.13), and the

chain rule of differentiation, that the rotationally invariant electric vector WL may be written

in the simple linear form

WL 0,L' (2.15)

The system of equations may readily be reduced to four equations in the four dependent

variables uM and 0 by straightforward substitution. The four equations consist of (2.1) and

(2.2).

The boundary conditions across material surfaces of discontinuity may be written in the

form

NL[KLj] = 0, [uM! = 0, (2.16)

NL[.] - = [1] = 0, (2.17)

where we have introduced the conventional notation [a.] for a+ - a-, NL denotes the unit

normal directed from the - to the + side of the reference position of the material surface of

discontinuity, and £ is the electric surface charge density per unit reference area that can exist

at a surface separating an insulator from a conductor. At a material surface separating two

insulators . vanishes. The boundary conditions may readily be expressed in terms of the four

dependent variables uM and 0 on each side of the material surface of discontinuity by

straightforward substitution4 .

3. Small Strain Quadra Ficld

In this section we reduce the general rotationally invariant electroelastic equations

presented in Section 2 to the special case of infinitesimal strain and quadratic electric fields.

In doing this we ignore the terms containing the dABCDE and XABCD in (2.14) in the
3 3



systematic treatment of this and the next section. However, we note that in the last section of

this paper we present the extended results that would have been obtained for the simple case

treated there, for which only one term of each of these material tensors occurs.

In making the reduction to infinitesimal strain powers of uM and its gradients higher

than the first are dropped in all expressions, and even the linear terms themselves are dropped

in comparison with any finite quantity, such as the Kronecker delta or 1, in the usual manner.

In this way we obtain

Yi,K ' 8 iK' XLi - Li J -•1, (3.1)
1

ELM - SLM = 7 (UL, + UML)" (3.2)

Then, introducing (3.1) and (3.2) in (2.9) and (2.10) and employing (2.11) and (2.15), we

obtain

HLj = 8jM [2LMAB AB+ eALMO,A- bABLMO,AOB], (3.3)

-L = eLBcSBC - XALOA + 3ABLO,AO,B' (3.4)
~LBBC 2 23

MU =e-o3JM [OLOM 1 7 O,KO,KkM](35

'L = " - ,L " (3.6)

The substitution of (3.3) and (3.5) into (2.7) enables us to write

KLj = 4jMTLM, (3.7)

where

TLM =- LMABSAB + eALMO,A - 7 bABLMOAO,B' (3.8)

and

bABLM = bABLM - 2e0o [L.AN "1 5ABkLM] (3.9)

6ABL ABLMI I
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The further substitution of (3.4) and (3.6) into (2.8) yields

= eLBcSBc LAoA + ½ XABLdoAo,B'
3

where the tensor of dielectric constants eLA is given by

-'LA = 6o8LA + XLA. (3.11)
~' " 2

The substitution of (3.7) into (2.1) yields the stress equations of motion in the form

TLML = e°•M' (3.12)

and we still have the charge equation of electrostatics (2.2), which we rewrite here for

completeness

-0. (3.13)

At this point we have the stress equations of motion (3.12) and charge equation of

electrostatics (3.13), both referred to the known reference coordinates. These are the four field

equations for the electroelastic continuum. The associated constitutive equations, which are

linear in the infinitesimal strain and up to quadratic in the electric field are given by (3.8) and

(3.10). The linear portion of these constitutive equations is identical with those of linear

piezoelectricity 5 , and we note that the effective electrostrictive tensor bABLM in (3.8)

contains the influence of the Maxwell electrostatic stress tensor as shown by (3.9) with (3.7)

and (3.5). The substitution of (3.8) and (3.10) with (3.2) into (3.12) and (3.13) yields four

differential equations in the four dependent variables uM and ý.

4. nionFal Ewuation far te Thin Pht wMih EuUX Eletrod MajQr Surfaces

A diagram of the thin plate with fully electroded major surfaces is shown in Figure 1

along with the associated coordinate system. Since we have restricted the description to

infinitesimal strain in Section 3, we dispense with the no longer necessary convention that

capital indices refer to the reference coordinates and lower case indices refer to the present

coordinates of material points, and use lower case indices exclusively to refer to the reference

coordinates of material points, to which the entire description is referred. In addition, for



convenience and because it is conventional we introduce the usual compressed notation for

tensor indices for stress and strain in the constitutive equations, in which p, q, r, s take the

values 1, 2, 3, 4, 5, 6 as ij or kl take the values 11, 22, 33, 23 or 32, 31 or 13, 12 or 12.

Accordingly, we rewrite the constitutive equations (3.8) and (3.10) in the compressed notation

thus

Tp = CpqSq - ekpEk - 7 bktpEkE1, (4.1)

D,,= e qSq + ekEk + I kEkE (4.2)

Iq q k2 Xki k j~

where we have taken the liberty of writing D1 for and E1 for 9 since the distinction

between the quantities is lost when the assumption of infinitesimal strain is employed.

Since the tractions T3 m on the electroded major surfaces vanish and the electroelastic

plate is very thin, we may make the assumptions of plane-stress and take T3m = 0 throughout

the plate. Similarly, since the electric fields vanish in the conducting electrodes and the

electroelastic plate is thin, we may take Ea = 0 throughout the plate, where we have introduced

the convention that a, b, c, d, take the values 1 and 2, but not 3. As in the case of anisotropic

plane stress, when so many of the stress components vanish it is advantageous to obtain the

strain-stress relations. To this end we operate on (4.1) with c-lr = srp to obtain

q = sqpTp + dkqEk +2 IJkqEjEk, (4.3)

where

dkp = ekpspq, OkIq = bktpSpq' (4.4)

and we note that the dkq are a well-known set of previously defined6 piezoelectric constants,

which are useful for plane-stress type calculations, whereas the plane-stress type nonlinear

electroelastic constants Oki are new. The substitution of (4.3) into (4.2) yields

D= dpTp + e'kEk + I xTjkEjEk' (4.5)

where
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ek =1k + eeqdkq, Xtjk = Xtjk + e/qlikq, (4.6)

d we note that the ETk are a well-known set of previously defined6 dielectric constants,

while the nonlinear electroelastic susceptibility constants X Tqk are new.

In the present notation the charge equation of electrostatics takes the form

D 1, =1 0. (4.7)

Since for the thin plate shown in Figure 1 the Dk vary slowly with respect to Xa, we first

rewrite (4.7) in the form

D3,3 + Daa = 0, (4.8)

and then note that Da,a is of smaller order than D3, 3. Hence, to lowest order we have

D3, 3 - 0, (4.9)

which yields

D3 = D3 (Xat). (4.10)

Furthermore, since

Ea = 0, (4.11)

and for a state of plane-stress to lowest order TkI and Sk1 are independent of X3, we have

shown that

E - V/t, (4.12)

where V is the driving voltage across the electrodes and t is the thickness of the plate. Thus

we have shown that (4.11) and (4.12) assure that (4.7) is satisfied to lowest order for the

nonlinear constitutive equations (4.5) or (4.2). Consequently, with (4.11) and (4.12), Eq.(4.7)

may be ignored from here on because it has been satisfied to lowest order for the nonlinear

constitutive equations (4.2) or (4.5).

Since we have (4.11) and by virtue of the validity of plane stress for the thin plate, we

also have

T3 m = 0, (4.13)



the constitutive equations (4.3) and (4.5) may be written in the reduced form

Sq = SqvTv +d 3qE3 + 1I333E2 (4.14)

D e=d iT~ +6 TE 1+2 (4.15)

where we have introduced the convention that v takes the numbers 1,2,6 but not 3,4,5. For the

symmetry of the polarized ceramic poled in the X 3-direction, the constitutive equations (4.14)

and (4.15) when written out in full take the reduced form

S1 = T + sl 2T2 + d31E3 + 33E2

S = T+S + E 1 2
52 = 12T 1 + 1 1 T2 +d 3 1 E3 + 7 J3 1 ET
S32= S13T +1 13T2 + d33E3 + 331

S4-=-0, S5-=0, S6 =s 6 6 T6 , D 1 =0, D2 -=-,

D3 = d3 1(T1 + T2) + T3E + T2 (4.16)
2)+ 3 3 7 X3 3E3 '

At this point we note that since the T3m have been taken to vanish for the thin plate,

5i3 must be negligible on account of (3.12), which is always the case for the low frequency

extension of thin plates7 . As a consequence, from (3.12) the stress equations of motion for

extension of the thin plate take the form

Taba = pa b' (4.17)

in our notation. Since for the low frequency extension of thin plates Eqs.(4.17) remain to be

satisfied, we must solve the constitutive equations (4.16) for Tab in terms of Sab and E3. The

result is

T =Cps +CPS -eP.E _I6 p
1 11 1 12 2 31E3 ½ 1-3'

+ -cY S c S - epE - 1 , E 2
T2 = cP12S1 11 2 31 37- 7 31E3'T ~~ ~ S D =,-.S+e S E+ 2 (4.18)

T6 =cS 6 , D3 =3 1S 1 + e~lS2 + 3 + 3 (43313'

where the plate constants with the superscript p are given by



10

Ssli P 12 A-s 2  2 i 2

C1 1  , 12 w 1 1V12'

31 s 1 1 + s12' Sl + s12 sll + s 12

P T d 31231(4.19)

X33 X333 21 + s12

and we note that although the constants cp, e• and e e wel kowr te expressions for
ab' e31.an 33 aewl nw h xrsin o

the nonlinear constants bP, and XP are new. The substitution of (4.18) with (3.2) into (4.17)

yields two differential equations in the two dependent variables uA. Whe., the major surfaces

of the polarized ceramic plate are completely covered with conducting electrodes, the

differential equations are independent of the voltage V, which appears only in certain of the

boundary or continuity conditions at the edges.

5. Stress-Fee lae J Sbeto 1QLa Electric Felds

When the thin ferroelectric ceramic plate polarized normal to the major surfaces, which

are fully electroded and subject to a large static voltage, is stress-free, the stress equations of

equilibrium (4.17) with Q b = 0 are satisfied trivially and the constitutive equations for the

in-plane strains, (4.16)1-2' take the relevant form

S1 =S 2 =d 3 1 E3 + 3 2 (5.1)1 1 3 1 3* (51)

In Section 3 we ignored the material tensors dABCDE and XABCID for the systematic
3 4

treatment presented in Sections 3 and 4, but we noted that we would present the extended

result for the relevant constitutive equations that would have been obtained for the simple case

treated had they been included. For the stress-free plate the constitutive equations that would

have been obtained in place of (5.1) are given by

S1 =52 = 3 1E 3 + 7 3 1E[l 6 3 E] 3 (5.2)



in which we have enclosed the term that was not obtained in the systematic treatment in

square brackets.

In Figure 2 the discrete solid boxes denote the data obtained by Crawley and

AndersonI and the straight dotted line tangent to the data near the origin is the prediction of

linear piezoelectricity for the known value of d3l. in nm/V. The curved solid line that departs

from the data for values of strain larger than 10-4 was obtained using the constitutive equation

given in (5.1) with the known value of d3 1 and employing a least squares fit to the measured

data for values of microstrain below 100 to evaluate 3,31 as .7949 pm 2/V2 . The curved solid

line that goes through all the data points was obtained using the constitutive equation given in

(5.2) with the known value of d3 1 and employing a least squares fit to all the measured data to

evaluate 0l31 and 733 V which in this fit have the values f31 = .8054 pm2 /V2 and 7331 = -

.7754 fm3 /V3 . Thus we have shown that the general nonlinear electroelastic description,

which existed long before the measurements were made, can readily be reduced to the form

that describes the thin electroelastic polarized ceramic plate subject to large electric fields and

accurately accounts for the measurements.
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FIGURE CAPTIONS

1. Thin Plate with Fully Electroded Major Surfaces

2. Electric Field vs Strain for Stress-Free Thin Plate of PZT G-1195 Polarized Ceramic.

(Experimental data after Crawley and Anderson1.)
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